direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×C23.37D4, (C6×D4)⋊20C4, (C2×D4)⋊8C12, C4.55(C6×D4), D4.6(C2×C12), D4⋊C4⋊15C6, (C2×C24)⋊38C22, C42⋊C2⋊3C6, (C2×C12).315D4, C12.462(C2×D4), C4.5(C22×C12), (C22×D4).8C6, C23.42(C3×D4), C22.45(C6×D4), (C6×M4(2))⋊29C2, (C2×M4(2))⋊11C6, (C22×C6).159D4, C6.127(C8⋊C22), C12.82(C22⋊C4), C12.150(C22×C4), (C2×C12).894C23, (C6×D4).289C22, (C22×C12).411C22, C4⋊C4⋊8(C2×C6), (C2×C8)⋊8(C2×C6), (D4×C2×C6).19C2, (C2×C4).23(C3×D4), C2.2(C3×C8⋊C22), (C3×C4⋊C4)⋊64C22, (C2×C4).21(C2×C12), (C2×D4).47(C2×C6), (C3×D4).28(C2×C4), (C2×C6).621(C2×D4), C4.14(C3×C22⋊C4), C2.21(C6×C22⋊C4), (C3×D4⋊C4)⋊38C2, (C2×C12).194(C2×C4), C6.109(C2×C22⋊C4), (C22×C4).35(C2×C6), (C2×C4).69(C22×C6), (C3×C42⋊C2)⋊24C2, (C2×C6).81(C22⋊C4), C22.20(C3×C22⋊C4), SmallGroup(192,851)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×C4 — C2×C12 — C3×C4⋊C4 — C3×D4⋊C4 — C3×C23.37D4 |
Generators and relations for C3×C23.37D4
G = < a,b,c,d,e,f | a3=b2=c2=d2=1, e4=d, f2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=fbf-1=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=cde3 >
Subgroups: 386 in 190 conjugacy classes, 82 normal (26 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, C12, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C2×D4, C24, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, C22×C6, D4⋊C4, C42⋊C2, C2×M4(2), C22×D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C3×M4(2), C22×C12, C6×D4, C6×D4, C23×C6, C23.37D4, C3×D4⋊C4, C3×C42⋊C2, C6×M4(2), D4×C2×C6, C3×C23.37D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C12, C2×C6, C22⋊C4, C22×C4, C2×D4, C2×C12, C3×D4, C22×C6, C2×C22⋊C4, C8⋊C22, C3×C22⋊C4, C22×C12, C6×D4, C23.37D4, C6×C22⋊C4, C3×C8⋊C22, C3×C23.37D4
(1 34 15)(2 35 16)(3 36 9)(4 37 10)(5 38 11)(6 39 12)(7 40 13)(8 33 14)(17 26 44)(18 27 45)(19 28 46)(20 29 47)(21 30 48)(22 31 41)(23 32 42)(24 25 43)
(1 24)(2 21)(3 18)(4 23)(5 20)(6 17)(7 22)(8 19)(9 45)(10 42)(11 47)(12 44)(13 41)(14 46)(15 43)(16 48)(25 34)(26 39)(27 36)(28 33)(29 38)(30 35)(31 40)(32 37)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 17)(7 18)(8 19)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 8 20 19)(2 18 21 7)(3 6 22 17)(4 24 23 5)(9 12 41 44)(10 43 42 11)(13 16 45 48)(14 47 46 15)(25 32 38 37)(26 36 39 31)(27 30 40 35)(28 34 33 29)
G:=sub<Sym(48)| (1,34,15)(2,35,16)(3,36,9)(4,37,10)(5,38,11)(6,39,12)(7,40,13)(8,33,14)(17,26,44)(18,27,45)(19,28,46)(20,29,47)(21,30,48)(22,31,41)(23,32,42)(24,25,43), (1,24)(2,21)(3,18)(4,23)(5,20)(6,17)(7,22)(8,19)(9,45)(10,42)(11,47)(12,44)(13,41)(14,46)(15,43)(16,48)(25,34)(26,39)(27,36)(28,33)(29,38)(30,35)(31,40)(32,37), (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8,20,19)(2,18,21,7)(3,6,22,17)(4,24,23,5)(9,12,41,44)(10,43,42,11)(13,16,45,48)(14,47,46,15)(25,32,38,37)(26,36,39,31)(27,30,40,35)(28,34,33,29)>;
G:=Group( (1,34,15)(2,35,16)(3,36,9)(4,37,10)(5,38,11)(6,39,12)(7,40,13)(8,33,14)(17,26,44)(18,27,45)(19,28,46)(20,29,47)(21,30,48)(22,31,41)(23,32,42)(24,25,43), (1,24)(2,21)(3,18)(4,23)(5,20)(6,17)(7,22)(8,19)(9,45)(10,42)(11,47)(12,44)(13,41)(14,46)(15,43)(16,48)(25,34)(26,39)(27,36)(28,33)(29,38)(30,35)(31,40)(32,37), (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8,20,19)(2,18,21,7)(3,6,22,17)(4,24,23,5)(9,12,41,44)(10,43,42,11)(13,16,45,48)(14,47,46,15)(25,32,38,37)(26,36,39,31)(27,30,40,35)(28,34,33,29) );
G=PermutationGroup([[(1,34,15),(2,35,16),(3,36,9),(4,37,10),(5,38,11),(6,39,12),(7,40,13),(8,33,14),(17,26,44),(18,27,45),(19,28,46),(20,29,47),(21,30,48),(22,31,41),(23,32,42),(24,25,43)], [(1,24),(2,21),(3,18),(4,23),(5,20),(6,17),(7,22),(8,19),(9,45),(10,42),(11,47),(12,44),(13,41),(14,46),(15,43),(16,48),(25,34),(26,39),(27,36),(28,33),(29,38),(30,35),(31,40),(32,37)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,17),(7,18),(8,19),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,8,20,19),(2,18,21,7),(3,6,22,17),(4,24,23,5),(9,12,41,44),(10,43,42,11),(13,16,45,48),(14,47,46,15),(25,32,38,37),(26,36,39,31),(27,30,40,35),(28,34,33,29)]])
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | ··· | 6R | 8A | 8B | 8C | 8D | 12A | ··· | 12H | 12I | ··· | 12P | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C2 | C3 | C4 | C6 | C6 | C6 | C6 | C12 | D4 | D4 | C3×D4 | C3×D4 | C8⋊C22 | C3×C8⋊C22 |
kernel | C3×C23.37D4 | C3×D4⋊C4 | C3×C42⋊C2 | C6×M4(2) | D4×C2×C6 | C23.37D4 | C6×D4 | D4⋊C4 | C42⋊C2 | C2×M4(2) | C22×D4 | C2×D4 | C2×C12 | C22×C6 | C2×C4 | C23 | C6 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 8 | 8 | 2 | 2 | 2 | 16 | 3 | 1 | 6 | 2 | 2 | 4 |
Matrix representation of C3×C23.37D4 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,1,0,0,0,0,0,0,72,0,0],[0,72,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C3×C23.37D4 in GAP, Magma, Sage, TeX
C_3\times C_2^3._{37}D_4
% in TeX
G:=Group("C3xC2^3.37D4");
// GroupNames label
G:=SmallGroup(192,851);
// by ID
G=gap.SmallGroup(192,851);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,1059,520,4204,2111,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=1,e^4=d,f^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=f*b*f^-1=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^3>;
// generators/relations