Copied to
clipboard

G = C3×C23.37D4order 192 = 26·3

Direct product of C3 and C23.37D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C23.37D4, (C6×D4)⋊20C4, (C2×D4)⋊8C12, C4.55(C6×D4), D4.6(C2×C12), D4⋊C415C6, (C2×C24)⋊38C22, C42⋊C23C6, (C2×C12).315D4, C12.462(C2×D4), C4.5(C22×C12), (C22×D4).8C6, C23.42(C3×D4), C22.45(C6×D4), (C6×M4(2))⋊29C2, (C2×M4(2))⋊11C6, (C22×C6).159D4, C6.127(C8⋊C22), C12.82(C22⋊C4), C12.150(C22×C4), (C2×C12).894C23, (C6×D4).289C22, (C22×C12).411C22, C4⋊C48(C2×C6), (C2×C8)⋊8(C2×C6), (D4×C2×C6).19C2, (C2×C4).23(C3×D4), C2.2(C3×C8⋊C22), (C3×C4⋊C4)⋊64C22, (C2×C4).21(C2×C12), (C2×D4).47(C2×C6), (C3×D4).28(C2×C4), (C2×C6).621(C2×D4), C4.14(C3×C22⋊C4), C2.21(C6×C22⋊C4), (C3×D4⋊C4)⋊38C2, (C2×C12).194(C2×C4), C6.109(C2×C22⋊C4), (C22×C4).35(C2×C6), (C2×C4).69(C22×C6), (C3×C42⋊C2)⋊24C2, (C2×C6).81(C22⋊C4), C22.20(C3×C22⋊C4), SmallGroup(192,851)

Series: Derived Chief Lower central Upper central

C1C4 — C3×C23.37D4
C1C2C22C2×C4C2×C12C3×C4⋊C4C3×D4⋊C4 — C3×C23.37D4
C1C2C4 — C3×C23.37D4
C1C2×C6C22×C12 — C3×C23.37D4

Generators and relations for C3×C23.37D4
 G = < a,b,c,d,e,f | a3=b2=c2=d2=1, e4=d, f2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=fbf-1=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=cde3 >

Subgroups: 386 in 190 conjugacy classes, 82 normal (26 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, C12, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C2×D4, C24, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, C22×C6, D4⋊C4, C42⋊C2, C2×M4(2), C22×D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C3×M4(2), C22×C12, C6×D4, C6×D4, C23×C6, C23.37D4, C3×D4⋊C4, C3×C42⋊C2, C6×M4(2), D4×C2×C6, C3×C23.37D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C12, C2×C6, C22⋊C4, C22×C4, C2×D4, C2×C12, C3×D4, C22×C6, C2×C22⋊C4, C8⋊C22, C3×C22⋊C4, C22×C12, C6×D4, C23.37D4, C6×C22⋊C4, C3×C8⋊C22, C3×C23.37D4

Smallest permutation representation of C3×C23.37D4
On 48 points
Generators in S48
(1 34 15)(2 35 16)(3 36 9)(4 37 10)(5 38 11)(6 39 12)(7 40 13)(8 33 14)(17 26 44)(18 27 45)(19 28 46)(20 29 47)(21 30 48)(22 31 41)(23 32 42)(24 25 43)
(1 24)(2 21)(3 18)(4 23)(5 20)(6 17)(7 22)(8 19)(9 45)(10 42)(11 47)(12 44)(13 41)(14 46)(15 43)(16 48)(25 34)(26 39)(27 36)(28 33)(29 38)(30 35)(31 40)(32 37)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 17)(7 18)(8 19)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 8 20 19)(2 18 21 7)(3 6 22 17)(4 24 23 5)(9 12 41 44)(10 43 42 11)(13 16 45 48)(14 47 46 15)(25 32 38 37)(26 36 39 31)(27 30 40 35)(28 34 33 29)

G:=sub<Sym(48)| (1,34,15)(2,35,16)(3,36,9)(4,37,10)(5,38,11)(6,39,12)(7,40,13)(8,33,14)(17,26,44)(18,27,45)(19,28,46)(20,29,47)(21,30,48)(22,31,41)(23,32,42)(24,25,43), (1,24)(2,21)(3,18)(4,23)(5,20)(6,17)(7,22)(8,19)(9,45)(10,42)(11,47)(12,44)(13,41)(14,46)(15,43)(16,48)(25,34)(26,39)(27,36)(28,33)(29,38)(30,35)(31,40)(32,37), (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8,20,19)(2,18,21,7)(3,6,22,17)(4,24,23,5)(9,12,41,44)(10,43,42,11)(13,16,45,48)(14,47,46,15)(25,32,38,37)(26,36,39,31)(27,30,40,35)(28,34,33,29)>;

G:=Group( (1,34,15)(2,35,16)(3,36,9)(4,37,10)(5,38,11)(6,39,12)(7,40,13)(8,33,14)(17,26,44)(18,27,45)(19,28,46)(20,29,47)(21,30,48)(22,31,41)(23,32,42)(24,25,43), (1,24)(2,21)(3,18)(4,23)(5,20)(6,17)(7,22)(8,19)(9,45)(10,42)(11,47)(12,44)(13,41)(14,46)(15,43)(16,48)(25,34)(26,39)(27,36)(28,33)(29,38)(30,35)(31,40)(32,37), (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8,20,19)(2,18,21,7)(3,6,22,17)(4,24,23,5)(9,12,41,44)(10,43,42,11)(13,16,45,48)(14,47,46,15)(25,32,38,37)(26,36,39,31)(27,30,40,35)(28,34,33,29) );

G=PermutationGroup([[(1,34,15),(2,35,16),(3,36,9),(4,37,10),(5,38,11),(6,39,12),(7,40,13),(8,33,14),(17,26,44),(18,27,45),(19,28,46),(20,29,47),(21,30,48),(22,31,41),(23,32,42),(24,25,43)], [(1,24),(2,21),(3,18),(4,23),(5,20),(6,17),(7,22),(8,19),(9,45),(10,42),(11,47),(12,44),(13,41),(14,46),(15,43),(16,48),(25,34),(26,39),(27,36),(28,33),(29,38),(30,35),(31,40),(32,37)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,17),(7,18),(8,19),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,8,20,19),(2,18,21,7),(3,6,22,17),(4,24,23,5),(9,12,41,44),(10,43,42,11),(13,16,45,48),(14,47,46,15),(25,32,38,37),(26,36,39,31),(27,30,40,35),(28,34,33,29)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B4A4B4C4D4E4F4G4H6A···6F6G6H6I6J6K···6R8A8B8C8D12A···12H12I···12P24A···24H
order122222222233444444446···666666···6888812···1212···1224···24
size111122444411222244441···122224···444442···24···44···4

66 irreducible representations

dim111111111111222244
type++++++++
imageC1C2C2C2C2C3C4C6C6C6C6C12D4D4C3×D4C3×D4C8⋊C22C3×C8⋊C22
kernelC3×C23.37D4C3×D4⋊C4C3×C42⋊C2C6×M4(2)D4×C2×C6C23.37D4C6×D4D4⋊C4C42⋊C2C2×M4(2)C22×D4C2×D4C2×C12C22×C6C2×C4C23C6C2
# reps1411128822216316224

Matrix representation of C3×C23.37D4 in GL6(𝔽73)

100000
010000
008000
000800
000080
000008
,
100000
010000
0072000
0007200
000010
000001
,
7200000
0720000
001000
000100
000010
000001
,
100000
010000
0072000
0007200
0000720
0000072
,
010000
100000
000010
0000072
0007200
0072000
,
010000
7200000
000010
000001
001000
000100

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,1,0,0,0,0,0,0,72,0,0],[0,72,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;

C3×C23.37D4 in GAP, Magma, Sage, TeX

C_3\times C_2^3._{37}D_4
% in TeX

G:=Group("C3xC2^3.37D4");
// GroupNames label

G:=SmallGroup(192,851);
// by ID

G=gap.SmallGroup(192,851);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,1059,520,4204,2111,172]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=1,e^4=d,f^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=f*b*f^-1=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^3>;
// generators/relations

׿
×
𝔽